Remarks on flat and differential K-theory

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME REMARKS CONCERNING MOD-n K-THEORY

The spectral sequence predicted by A. Beilinson relating motivic cohomology to algebraic K-theory has been established for smooth quasi-projective varieties over a field (cf. [FS], [L1]). Among other properties verified, this spectral sequence has the expected multiplicative behavior (involving cup product in motivic cohomology and product in algebraic K-theory) and a good multiplicative “mod-n...

متن کامل

Some Remarks on Nil Groups in Algebraic K-theory

This note explains consequences of recent work of Frank Quinn for computations of Nil groups in algebraic K-theory, in particular the Nil groups occurring in the K-theory of polynomial rings, Laurent polynomial rings, and the group ring of the infinite dihedral group. 1. Statement of Results Let R be a ring with unit. For an integer q, let KqR be the algebraic K-group of Bass and Quillen. Bass ...

متن کامل

Loop Differential K-theory

In this paper we introduce an equivariant extension of the ChernSimons form, associated to a path of connections on a bundle over a manifold M , to the free loop space LM , and show it determines an equivalence relation on the set of connections on a bundle. We use this to define a ring, loop differential K-theory of M , in much the same way that differential K-theory can be defined using the C...

متن کامل

K-FLAT PROJECTIVE FUZZY QUANTALES

In this paper, we introduce the notion of {bf K}-flat projective fuzzy quantales, and give an elementary characterization in terms of a fuzzy binary relation on the fuzzy quantale. Moreover, we  prove that {bf K}-flat projective fuzzy quantales are precisely the coalgebras for a certain comonad on the category of fuzzy quantales. Finally, we present two special cases of {bf K} as examples.

متن کامل

Remarks on logarithmic K-stability

1.1. Log-K-stability Let (X, J) be a Fano manifold, that is, K−1 X is ample. A basic problem in Kähler geometry is to determine whether (X, J) has a Kähler–Einstein metric (see [22]). The existence problem of Kähler–Einstein metric is a special case of the existence problem of constant scalar curvature Kähler (cscK) metric. For the latter, we fix an ample line bundle L on (X, J). We have the fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales mathématiques Blaise Pascal

سال: 2014

ISSN: 1259-1734,2118-7436

DOI: 10.5802/ambp.337